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1. INTRODUCTION

One of the prettiest results in approximation theory is an old theorem of
S. Bernstein which states that if /™ is absolutely continuous on [—1, 1]
and f™V isin L*[—1, 1], then

i,
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where the distance is measured in the L“[--1, 1] norm, !l - |, and P, is the
space of algebraic polynomials of degree -7 n. The inequality (1) is sharp,
since when f(x) = 27%/(n + 1)! cos(# -i- 1) arc cos X, it becomes an equality.
In approximation theoretic terms, (1) provides an estimate for the error in
approximating fin || - !l,, by elements of P, . Of course, it is of interest to
obtain results for other norms (e.g., £.”) and other spaces. This paper makes
a modest contribution in this direction.

In order to provide the proper setting for our generalizations, we introduce
the idea of the minimum modulus of a differential operator. Suppose 7"is an
ordinary linear differential operator of order » with domain 2/(T)
{fe L*[—1,1]: f"Dac, Tfe L1, 1}l Denote by A4(T), the null space
of T. When considered as a mapping on Z(7T)/A4(T)into L9]--1, 1], 7 has an
inverse. The reciprocal of the norm of this inverse operator is called the
minimum modulus of 7, (7, p, ¢). It is casy to verify the formula

AT, p, @)t = Sup, dist, (1, ACT)). (2)
f“q
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If there is a function fin Z(T') for which the supremum on the right-hand side
of (2) is attained, we say f is extremal.

We can now restate (1) in terms of the minimum modulus. We use n -+ 1
instead of # and consider the operator 7" == D7?+%. The null space of T'is P,, .
Hence, the inequality (1) and the fact that it is sharp is exactly the same as
saying

y(D™1, 0, 00) = 2Mn 4 1)!.

Also, the function 2-#/(n + 1)! cos(n |- 1) arc cos x is extremal.

In this sense, we see that (1) is really just the determination of
y(D"*1, oo, o). It is in this spirit that we seek generalizations of (1). Thus,
we will replace D"*1 by more general operators 7, and replace P,, by A4(T).
We would also like to replace L= by other L* spaces. The problem then is to
determine (7, p, g). When this is accomplished, we have the inequality

disty(f, A(T)) << AT, 0, ) Tf Nl )

as our generalization to (1), and of course (3) is sharp.
Our techniques will be applicable to operators T of the form

T=(D+AM) (D +Ax),  AeCrP[—1]] (4)

The functions A, are assumed to be real valued. These requirements on T
guarantee,amongother things, that 47(7")is a Chebyshev space of dimensionn.

In Section 2, we will determine (7, p, o), for each 1 <C p <C 0. The case
¥(T, oo, o) is a result of M. Zedek [7]. The value of y(7, oo, o0) was also
obtained by T. Rivlin [6] with a different point of view. Our approach differs
from Rivlin’s and Zedek’s. It is more in line with the traditional proofs of
Bernstein’s inequality. In Section 3, we will determine (7, 1, 1). Here, our
approach is approximation theoretic, relying heavily on duality and
characterizations of best approximations in L.

The reader will find that conspicuously absent is the determination of
(T, 2, 2), which on the surface would appear to be the most manageable
because of all the structure in £2. This case can be handled in a theoretical
sense using a calculus of variations approach as is done in the paper of
S. Goldberg and A. Meir [3]. However, the determination of the numerical
value of ¥(7, 2, 2), even for T == D" appears to be a formidable problem.

2. THE DETERMINATION OF (T, p, o©)

When T'is a differential operator of the form (4), then A47(T) is a Chebyshev
space of dimension n (Zedek [7]). This means that we can interpolate any
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n values by functions in A(T). We will use a remainder formula for this
interpolation which is the analogue of Cauchy’s formula for Lagrange
interpolation.

LemMa 1. If fe C™[—1., 1] has (n - 1) distinct zeros in [—1. 1], then
there is a point & in (—1, 1) for which Tf(&) 0.

Proof. This is a result of Zedek [7].

Lemma 2. Suppose s is a solution to the equation T — 1 on [-—1, 1]
which has exactly n distinct zeros x, , Xy ,..., X, in [—1, 1}. If fe Ct9[—1, 1]
and P c A (T) interpolates [ at each point x; , x4 ..., x,, , L.e., P(x;) == f(x,),
i ==1,2,...,n then for each x e [—1, 1] there is a £, ¢ (—1, 1) such that

Fx) = P(x) == Tf(E,) (x). (5)

Proof. The proof is an exact mimic of the proof of Cauchy’s formula for
T =: D" The formula (5) is clear when x is one of the points xy , X, ...., X, .
When x =2 x;, 0 = 1,2,..,n,let = (f(x)) - (f(x) — P(x)). The function
f(ty — P(t) — xaf(t) vanishes at the n -+ 1 distinct points x, Xy, Xy 1oy Xy
and hence by Lemma [ there is a point &, for which (/' — P — «af)(€,) == 0.
Since, TP == 0 and T == 1 on [—1, 1], the last equation can be rewritten
as a = Tf(£,) which gives (5) by the very definition of «.

Now, let ¢ be any function in C*"'[—1, 1] for which T ~= | on [--1, 1].
We want to approximate s by elements of .47(T') in the L?[~1, 1] norm. The
existence and uniqueness of such approximants are classical results [4].
Denote by P,*, the best L"[—1, 1] approximation to  from .47(T), so that

i‘ ¢ o Pn* i‘p N Pei.,?'f(j'l)i 1711 - P’ » -
LemMMA 3. Foreach | = p <L oo, the function i, = - P,* has exactly
n distinet zeros in [—1, 1] and changes sign at each of these zeros.

Proof. We first show that i, has at least n changes of sign in [--1, 1].
For p -1, oo, this follows from the classical alternation theorems. For
1 << p << oo, the proof is simple enough. By the duality theorem for L~
approximation [4, p. 84], the function #, = {4, "7} sgn ¥, is orthogonal
to A(T), ie.,

|1 PXYh(x)dx -0,  PeN(T) (6)
1

Notice that &, changes sign precisely at the points where s, changes sign. If
¢, and hence £, has less than n changes of sign in (—1, 1), then we can
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construct a function P e A#(T) which changes sign precisely at these points
(this is a well-known property of Chebyshev systems [5, p. 30]). This makes it
clear that

nl
| P (x) dx 0,
-1
which is the desired contradiction. Thus, i, has at least # changes of sign in
(—1, ).

That ¢, can have no more than n zeros in [—1, 1] follows from Lemma 1.
For if not there would be a point &e(—1, 1), with Ty, (&) = 0 which
contradicts the fact that 73, == 1 on [—1, 1].

We can now easily prove the main result of this section.

THeOREM L. If T is of the form (4), then for | < p <l oo, v(T, p, o0) =
L, |t and i, is an extremal function.

Proof. Let x{, x;,..., x,, be the n distinct zeros of ¢, in [—1, 1]. Suppose
first that fe C™[—1, 1] and P, € A(T) is the function which interpolates f
at X, X5 ,..., X, . From Lemma 2, we see that if x € [—1, 1], there is a point
&, €(—1, 1) such that

f(,\’) - Pf(x) = Tf(é:r) ¢1)(x)-
So,

S = Pl <[ TS [ ha(x), —1 <fx <0 1
Taking the norm in L7, we find

‘1/) Pf Hp = \‘ Tfrr [ lf/jl) Vz» »

or
dist,(f, AT < | o, |, | Tf L - %

This result also holds for all f with f®-D absolutely continuous and
Tfe L*[—1, 1], because of the denseness of C”[—1, 1] in this space. The
estimate (7) shows that (7, p, ) == || 4,7\, The opposite inequality is
immediate when we take f == i, .

When T = D*, the functions i, and the values of y(D", p, o) are easily
obtained for p ==1,2, co. For p — 1, ¢, 1s the normalized Chebyshev
polynomial of the second kind and y(D%, 1, o) = 2"7'n!. For p = 2, ¢, is
the normalized Legendre polynomial of degree n and (D", 2, o) =
(n 4 1/2)2(2m)!/2"n! . For p = o, i, is the Chebyshev polynomial of
degree n and y(D", oo, o) = 2*7In!, which is again Bernstein’s result (1).
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3. THE DETERMINATION OF y(7, 1, 1)

In this case the situation is a little more subtie, mainly because there is no
extremal function in Z(7). We will use a well-known duality theorem for L!
approximation which we now state.

LemMMA 4. Let fe IM[—1, 1] and 4 be a finite dimensional subspace of
LA —1,1]. Then,

disty(f, #) = sup f " £ h) dx,
he Y1

where A+ = {he L*: | hil, = 1 and [, P(x) h(x) dx = 0, P e .4}

Recall, the function i, introduced in the last section. Since the span of
A(T) U {if,} is a Chebyshev space (use Lemma 1), we also have available
Markov’s theorem for L* approximation [4, p. 67].

Lemma 5. Let fe C[—1, 1] and P, € A(T) be that function which inter-
polates f at x;, Xy ,..., X, the zeros of Jn, . If f — P; changes sign precisely at
X1y Xo seeey Xy , then Py is the best LM —1, 1] approximation to f from A(T) and

distif, M) = | | ) san o) di |

Lemma 6. If fe C™[—1, 1l with Tf = 0 (Tf < 0) on [—1, 1], then P; is
the best L'[—1, 1] approximation to f from A(T) and

1 oal
disty(f, AT = | [ 1) sgn fax) .
Y1
Proof. From Lemma 2, we see that

Fx) — Px) = Tf(&,) ().

Since Tf > 0, /' — P; will change sign precisely when s, does and thus the
result follows from Lemma 5.

We can now determine (7, 1, 1). Let T* be the adjoint operator to T
(see [2, p. 1285]). Denote by ¥, , the solution to the differential equation
T*Y¥ == sgn i , with initial conditions ¥{"(—1) =0, k = 1, 2,.... n. When
feC™[—1,1] and Pe A(T) with P¥(1) = f¥(1), k == 1,2,..., n, then
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j_ll F() sgn h(x) dx = J_ll (f(x) — P(x)) sgn y(x) dx

- f_ll (f(X) - P(,\’)) T*l-pl(’f) dx

- ‘ 11 T(f — P)(x) Pi(x) dx

~1
= | Tf(x) W) dx. (8)
I
Similarly, if % is any function in A°(T)* and H satisfies T*H = h, with
H®(—1) =0,k =1, 2,..., n, then

f_llf (%) h(x) dx = f 11 Tf(x) H(x) dx ©9)

THEOREM 2. If T is of the form (4), then (T, 1, 1) = || #1125

|
Bee)

Proof. First, let fye C™[—1, 1]with | TfyIl;, = 1 and i e #(T)*. Then,
by (9)

a1

1
[ ' Jo(x) h(x) dx = f Tfo(x) H(x) dx < sup J Tf(x) H(x) dx. (10)
Y1 -1 IT7lii=1 “—1

It is to be understood in (10) and the sequel that the suprema are taken only
over functions in C™[—1, 1], unless explicitly stated otherwise. Now, the
supremum in (10) is the L=[—1, 1] norm of H. If || H ., = H(x,) for some
Xy €[~—1,1], then the supremum can be attained by considering only
functions with 7f > 0. Hence, in this case,

[ ' Jo(x) A(x) dx < sup fl Tf(x) H(x) dx
1 T7>0

J_ vo1

ITriy=1
1 ol
= sup ’- F(x) h(x) dx < sup ]J F(x) sgn (x) dx
Tr>0 v—1 TF>0 -1
ITip-1 ATl =1
1
—~ sup t [ 170 P ax | <11,
H;ffﬁil -

Here, for the second inequality, we used Lemmas 6 and 4.
Similarly, when || H{, = — H(x,), we need only consider /s with 7 < 0.
Arguing as we have above, we find that

[ £ () dx < |,

1
-___1.
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for all # € A47(T). Hence, from Lemma 4, it follows that

d]Stl(/() b3 '/V‘( T)) \1 IIJI ML 5 (1 ] )
whenever f e CU[—1, 1], with | T/, I. The restriction fy& C" is
removed by a denseness argument. Thus, (11) shows that

w0y W (12)

To see the reverse inequality, consider any f'e C®{—1, 1], with 7f > 0
(Tf < 0) and || 7f); == 1. Then, from Lemma 6

dist,(f, A(T)) = l ‘_11 J(x) sgn fy(x) dx i - l J; Tf(x) Pi(x) dx ‘

Taking a supremum over all such f we see that the right-hand side becomes
the L=[—1, 1] norm of ¥, . so that
sup  disty(fs A7) = [ ¥1 e

NTrly=1
In other words,
AT, 1, 1) < I

This is the reverse inequality to (12) and proves the theorem.

When we take T == D", the function i is the Chebyshev polynomial of the
second kind of degree n. Hence sgn , == sgnsin(n - 1) arc cos x. This
means that sgn §; changes sign at the points cos(kn/(n - 1)), k = 1, 2,..., n.
The points cos(kw/(n — 1)) are spaced so that the distance between consecu-
tive points increases as we move from ~1 to 0 and decreases as we move from
0 to 1. Because of this, an induction argument shows that || ¥, ||, is | ¥;(0)]
when #n is odd and * Wi(cos(n + 2)7/(2n i 2))| when n is even.

Rather than try to determine || ¥, ||,. directly, it is easier to return to the
ideas used in the proof of Theorem 2. Consider the case when || ¥, ||.. =: ¥;(0).
Then,

,0) ~ | 11 W,(x) dulx),

where dp is the Dirac measure with unit mass at 0. The measure du is not the
nth derivative of a function from %(D") which is why we dont have an
extremal function. However,

0 [ ¥ duto)

l ! T 1 . "
T = { o sgn fy(x) dx = Tt dist,(x?7", P,_)),

where x 7" is defined to be 0 if x <~ 0 and x"'if x > 0.
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Even though there is no extremal function in the strict sense (x’ ' is not

in Z(D")), the function x'/(n — 1)! still serves the purpose of determining
y(D7, 1, 1) when n is odd. Similarly,

(y(D", 1, 1)yt = Cﬂ——i—]—)«' disty((x-cos(n + ) #/(2n - 20T, P, _y),

when » is even. The problem of determining dist,(x’ ', P, ;) is solved
explicitly in [1] by means of a finite but complicated sum which we do not
reproduce here. When # is even, the results of [1] do not determine (D", 1, 1)
explicitly but do provide asymptotic estimates.
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