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I. INTRODUCTION

One of the prettiest results in approximation theory is an old theorem of
S. Bernstein which states that if !In) is absolutely continuous on [-1, 1]
and!lnl) is in L"'[-I, 1], then

2---- i i.

(/1
j 'ln-I-I)

I) !
(I)

where the distance is measured in the U [ I, I] norm, , and Pn is the
space of algebraic polynomials of degree II. The inequality (1) is sharp,
since whenf(x) cc~ 2-- n /(1I +- 1)! COS(1I1 I) arc cos x, it becomes an equality.
In approximation theoretic terms, (I) provides an estimate for the error in
approximating! in !1 . by elements of P" . Of course, it is of interest to
obtain results for other norms (e.g., /.11) and other spaces. This paper makes
a modest contribution in this direction.

In order to provide the proper setting for our generalizations, we introduce
the idea of the minimum modulus of a differential operator. Suppose T is an
ordinary linear differential operator of order 11 with domain C/( T)

(fE £1'[--1, 1]:fln~l) a.c., TIE L"[ I, Ill. Denote by .inT), the null space
of T. When considered as a mapping on rJi( n!,V( T) into L"[ 1, 1], T has an
inverse. The reciprocal of the norm of this inverse operator is called the
minimum modulus of T, y(T, p, q). It is easy to verify the formula

(y(T, p, q))-l sup distp(f, ..Ven).
IIT!'Q I
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If there is a functionjin geT) for which the supremum on the right-hand side
of (2) is attained, we say j is extremal.

We can now restate (1) in terms of the minimum modulus. We use n + 1
instead of n and consider the operator T =.eo Dn+l. The null space of Tis P n •

Hence, the inequality (1) and the fact that it is sharp is exactly the same as
saying

Also, the function 2-n /(n + I)! cos(n + 1) arc cos x is extremal.
In this sense, we see that (1) is really just the determination of

y(Dn+1, 00, (0). It is in this spirit that we seek generalizations of (1). Thus,
we will replace Dn+l by more general operators T, and replace P n by .A/"(T).
We would also like to replace LCfJ by other VI spaces. The problem then is to
determine yeT, p, q). When this is accomplished, we have the inequality

distp(j, .AI(T)) ~ (y(T,p, q))-lll TjIIQ'

as our generalization to (l), and of course (3) is sharp.
Our techniques will be applicable to operators T of the form

(3)

T = (D + -'n(x)) .,. (D + ,\(x)), (4)

The functions -'/e are assumed to be real valued. These requirements on T
guarantee, among other things, that .AI(T) is a Chebyshev space ofdimensionn.

In Section 2, we will determine yeT, p, (0), for each 1 ~ p ~ 00. The case
yeT, 00, (0) is a result of M. Zedek [7]. The value of yeT, 00, (0) was also
obtained by T. Rivlin [6] with a different point of view. Our approach differs
from Rivlin's and Zedek's. It is more in line with the traditional proofs of
Bernstein's inequality, In Section 3, we will determine yeT, 1, I). Here, our
approach is approximation theoretic, relying heavily on duality and
characterizations of best approximations in V.

The reader will find that conspicuously absent is the determination of
yeT, 2, 2), which on the surface would appear to be the most manageable
because of all the structure in L2. This case can be handled in a theoretical
sense using a calculus of variations approach as is done in the paper of
S. Goldberg and A. Meir [3]. However, the determination of the numerical
value of yeT, 2, 2), even for T == Dn, appears to be a formidable problem.

2. THE DETERMINAnON OF yeT, p, (0)

When T is a differential operator of the form (4), then .AI(T) is a Chebyshev
space of dimension n (Zedek [7]). This means that we can interpolate any
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n values by functions in JiI'(T). We will use a remainder formula for this
interpolation which is the analogue of Cauchy's formula for Lagrange
interpolation.

LEMMA 1. IffcOU)[-I, IJ has (n 1) distinct zeros in [--I.IJ, then
there is a point ~ in ( --I, I) for which Tt (~) O.

Proal This is a result of Zedek [7J.

LEMMA 2. Suppose 1J is a solution to the equation Tlji I on [-I, I J
which has exactly 11 distinct zeros "1 , X~ ,... , XII in [-I, I]. Ilf c ell/) [ --I, I J
and Pc d'V'(T) interpolates f at each point Xl' X2 , ... , X n , i.e., P(x;) f(x,),
i c_c 1,2, ... ,11, then for each X E [--1, IJ there is a ~J' (-I, I) such that

f(X) --- P(x) (5)

Proal The proof is an exact mimic of the proof of Cauchy's formula for
T =_c D". The formula (5) is clear when X is one of the points Xl , X2 , ..• , XII .
When X," Xi, i= 1,2,... , n, let '" ~ (lji(X»-l . (l(x) P(x)). The function
jet) - P(t) -- ("lji(t) vanishes at the n + I distinct points x, Xl' X2 , ... , XI/ ,
and hence by Lemma I there is a point ~J: for which T(f- P -- cxlji)(f,.) O.
Since, TP 0 and T1;c= I on [-I, I J, the last equation can be rewritten
as Cl:~C Tf(~x) which gives (5) by the very definition of 0:.

Now, let 1/; be any function in Ou) [ I, I J for which Tlji = I on [-I, I J.
We want to approximate lji by clements oL1'(T) in the U[--I, IJ norm. The
existence and uniqueness of such approximants are classical results [4J.
Denote by P J,*, the best D)'[--I, IJ approximation to 1J from .1I·(T), so that

lji -- p),* inf _ lji - P I"
Pc "I (1)

LEMMA 3. For each I jJ Q', the jill1ction lji;J 1; P p * has exactly
n distinct zeros in [-I, I Jand changes sign at each of these zeros.

Proof We first show that 1Jp has at least n changes of sign in [ I, I J.
For fJ 1, CXJ, this follows from the classical alternation theorems. For
I < p < Q" the proof is simple enough. By the duality theorem for U
approximation [4, p. 84J, the function h" i ljip !H sgn lji J! is orthogonal
to A"(T), i.e.,

.1I P(x) hp(x) dx
'-1

0, P E A·(T). (6)

Notice that hp changes sign precisely at the points where lji)l changes sign. If
ljip and hence hp has less than n changes of sign in (--I, I), then we can
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CXJ, y( T, p,CXJ) ,=

construct a function P E J1I'(T) which changes sign precisely at these points
(this is a well-known property of Chebyshev systems [5, p. 30]). This makes it
clear that

.1I P(x) hjx) dx '!~ 0,
'-I

which is the desired contradiction. Thus, ,pp has at least n changes of sign in
(-I, I).

That ,p]) can have no more than n zeros in [-1, I] follows from Lemma l.
For if not there would be a point t c= (-1, I), with TifJ)JW = 0 which
contradicts the fact that T,pp ] on [-1, I].

We can now easily prove the main result of this section.

THEOREM I. If T is of the form (4), then for I p
I;,pp I) and,pp is an extremalfunction.

Proof Let Xl , X 2 , ... , X n be the n distinct zeros of ,p1) in [-I, 1]. Suppose
first thatfE crn1[-1, I] and Pf E .lV'(T) is the function which interpolatesf
at Xl , X 2 , ... , X n . From Lemma 2, we see that if x E [-1, 1], there is a point
tx c= (--1, I) such that

So,

Taking the norm in LP, we find

-I x I.

or

(7)

This result also holds for all f with /<n-ll absolutely continuous and
Tf E U [-1, 1], because of the denseness of C(J») [-I, I] in this space. The
estimate (7) shows that y(T, p, CXJ) Ii ,pp Ii-I. The opposite inequality is
immediate when we takef = ifJ p •

When T = Dn, the functions ,pp and the values of y(D", p, w) are easily
obtained for p = 1,2, CXJ. For p ~ I, ,pI is the normalized Chebyshev
polynomial of the second kind and y(Dn, 1, CXJ) = 2n- 1n!. For p = 2, ,p2 is
the normalized Legendre polynomial of degree nand y(Dn, 2, CXJ) =

(n + 1/2)1/2(2n)!/2nn!. For p = CXJ, ,p,,, is the Chebyshev polynomial of
degree nand y(Dn, CXJ, CXJ)= 2 n- 1n! , which is again Bernstein's result (I).



132 RONALD A. DEVORE

3. THE DETERMINATION OF y(T, I, I)

In this case the situation is a little more subtle, mainly because there is no
extremal function in g(T). We will use a well-known duality theorem for L 1

approximation which we now state.

LEMMA 4. Let f E £1[-I, I] and At be a finite dimensional subspace of
£1[-1, I]. Then,

distlU; ./It) = sup r f(x) h(x) dx,
IlE.«-'- -1

where ./Ill. = {h E L"': 11 h fl", = 1 and J~I P(x) h(x) dx = 0, P E ./It}.

Recall, the function l{;1 introduced in the last section. Since the span of
.A!(T) U {l{;1} is a Chebyshev space (use Lemma 1), we also have available
Markov's theorem for £1 approximation [4, p. 67].

LEMMA 5. Let f E C[-I, I] and Pf E ,/V(T) be that fimction which inter­
polates f at Xl , X2 ,... , X n the zeros of l{;1 . Iff - P f changes sign precisely at
Xl' X2 ,... , x n , then Pf is the best £1[ -I, I] approximation toffrom A'(T) and

0·1 .

dist1(f, JV(T)) = IJ/(x) sgn l{;1(X) dx I·

LEMMA 6. IffE c(n)[-I, I] with Tf 0 (Tj' < 0) on [-I, I], then Pf is
the best U[ -I, 1] approximation to f from ./V(T) and

Proof From Lemma 2, we see that

Since Tf> 0, f - Pf will change sign precisely when l{;1 does and thus the
result follows from Lemma 5.

We can now determine y(T, I, I). Let T* be the adjoint operator to T
(see [2, p. 1285]). Denote by PI , the solution to the differential equation
T*P sgn if/l , with initial conditions Pi'd( --1) = 0, k = 1, 2, 11. When
fEClnl[-I,I] and PE.A!(T) with plk)(I) =f(l')(I), kc,~ 1,2, ,11, then
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r f(x) sgn 1fl(X) dx = r (l(x) - P(x)) sgn 1fI(X) dx
-1 -1

= r (l(x) - P(x)) T*TI(x) dx
-1

·1

= I T(l - P)(x) T 1(x) d.e
• -1

.1

= I Tf(x) TI(x) dx. (8)
'-1

Similarly, if h is any function in c1!(T)-L and H satisfies T* H =, II, with
HUc)( -1) = 0, k = 1,2,... , n, then

1 r1f f(x) hex) dx = Tf(x) H(x) dx
-1 '-1

(9)

THEOREM 2. If T is of the form (4), then yeT, 1, 1) = IIT1 Ii:;?

Proof First, let fa EO Cln,[ -1,1] with [I Tio ill = 1 and h EO ,AI"(T)-L. Then,
by (9)

r
1 Jl .1

fo(x) hex) dx = Tfa(x) H(x) dx:(' sup j Tf(x) H(x) dx.
--I -1 IITflll~1 -1

(10)

It is to be understood in (10) and the sequel that the suprema are taken only
over functions in On)[ --1, 1], unless explicitly stated otherwise. Now, the
supremum in (10) is the LX:[ -1, 1] norm of H. If il H lio ~~ H(xo) for some
X o EO [-l, 1], then the supremum can be attained by considering only
functions with Tf> 0. Hence, in this case,

r
1 1

fo(x) hex) dx:(' sup r Tf(x) H(x) dx
"-I Ti>O '-]

IITil'l~1

sup rf(x) hex) dx:(' sup Irf(x) sgn VJ](x) dx I
Tf>O • -1 Tf>O -]

r: T(:1~1 'I Tf!il'~l

~~~ If
1

Tf(x) T 1(x) dx I :(' II T I
II Ti!!t "~1

Here, for the second inequality, we used Lemmas 6 and 4.
Similarly, when H = -H(xo), we need only consider/,s with Tf < O.

Arguing as we have above, we find that

r'Mx) hex) dxl T]IO' ,
'-1
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for all h E ,I '( T). Hence, from Lemma 4, it follows that

If!
1 (II)

whenever j;) E Oll)[-I, I], with T/;) 1;1 l. The restrictIon j~ E, CII'j is
removed by a denseness argument. Thus, (II) shows that

y(T, I, I) (12)

To see the reverse inequality, consider any fE C(lI)[-I, 1], with If;::> 0
(Tf < 0) and il Tflil I. Then, from Lemma 6

distjU; ,;J!'(T)) =~ \ f
l

f(x) sgn Vil(X) dx I-I f
l

Tf(x) Pl(x) dx I·

Taking a supremum over all such f we see that the right-hand side becomes
the L't: [-I, l] norm of P j , so that

sup distlU; ./V(T)) ;;'" P j lief'
11Tfl'1~1

In other words,

y(T, I, I) P j

This is the reverse inequality to (12) and proves the theorem,
When we take T= Dn, the function Vlj is the Chebyshev polynomial of the

second kind of degree n. Hence sgn!f;j ~= sgn sin(n _L I) arc cos x. This
means that sgn !f;] changes sign at the points COs(k7T!(n -+- In, k = 1,2,00.,11.
The points COs(k7T!(n -;- I)) are spaced so that the distance between consecu­
tive points increases as we move from·-I to 0 and decreases as we move from
oto I. Because of this, an induction argument shows that liP] I!w is I Pl(O) 1
when n is odd and Pj(cos(n -+- 2)7T!(211 2))1 when n is even.

Rather than try to determine PI Ilac directly, it is easier to return to the
ideas used in the proof of Theorem 2. Consider the case when PI Ilac Pl(O).
Then,

01

Pl(O) ccc I Pl(x) dfl·'(x),
• ·-1

where dp. is the Dirac measure with unit mass at O. The measure dp. is not the
nth derivative of a function from !Z:(Dn) which is why we dont have an
extremal function. However,

.j

Pj(O) I P 1(x) dp.(x)
'.,]

I rl
n-1 " ( ) dId' ("-1 P )= -(._ '1'-)" x+ sgn 'ill x x = '(-=-1" 1st] X'I , 11-]'n . '_] n ).

where x~-] is defined to be 0 if x < 0 and x"-1 if x O.
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2))~ I, P.'-I)'

Even though there is no extremal function in the strict sense (X'. I is not
in .rz'(Dn)), the function X'~-I j(n - 1)! still serves the purpose of determining
y( D", I, I) when n is odd. Similarly,

(y(D", 1,1))-1= (n ~ I)l distI((x-cos(n + 2) rrj(2n

when n is even. The problem of determining distj(x',' I, P n 1) is solved
explicitly in [I] by means of a finite but complicated sum which we do not
reproduce here. When J1 is even, the results of [I] do not determine y( D", I, I)
explicitly but do provide asymptotic estimates.
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