Minimum Moduli of Differential Operators from the Viewpoint of Approximation Theory

RONALD A. DEVORE*

Department of Mathematics, Oakland University, Rochester, Michigan 48063 Communicated by P. L. Butzer

DEDICATED TO PROFESSOR G. G. LORENTZ ON THE OCCASION OF HIS SIXTY-FIFTH BIRTHDAY

1. INTRODUCTION

One of the prettiest results in approximation theory is an old theorem of S. Bernstein which states that if $f^{(n)}$ is absolutely continuous on [-1, 1] and $f^{(n+1)}$ is in $L^{\infty}[-1, 1]$, then

$$\operatorname{dist}_{\infty}(f, \mathbf{P}_n) \leq \frac{2^{-n}}{(n+1)!} \|f^{(n+1)}\|_{\infty}, \qquad (1)$$

where the distance is measured in the $L^{\infty}[-1, 1]$ norm, $\|\cdot\|_{\infty}$, and \mathbf{P}_n is the space of algebraic polynomials of degree $\leq n$. The inequality (1) is sharp, since when $f(x) = 2^{-n}/(n+1)! \cos(n+1)$ arc $\cos x$, it becomes an equality. In approximation theoretic terms, (1) provides an estimate for the error in approximating f in $\|\cdot\|_{\infty}$ by elements of \mathbf{P}_n . Of course, it is of interest to obtain results for other norms (e.g., L^{ν}) and other spaces. This paper makes a modest contribution in this direction.

In order to provide the proper setting for our generalizations, we introduce the idea of the minimum modulus of a differential operator. Suppose T is an ordinary linear differential operator of order n with domain $\mathcal{D}(T) =:$ $\{f \in L^{n}[-1, 1]: f^{(n-1)} \text{ a.c., } Tf \in L^{q}[-1, 1]\}$. Denote by $\mathcal{N}(T)$, the null space of T. When considered as a mapping on $\mathcal{D}(T)/\mathcal{N}(T)$ into $L^{q}[-1, 1]$, T has an inverse. The reciprocal of the norm of this inverse operator is called the minimum modulus of T, $\gamma(T, p, q)$. It is easy to verify the formula

$$(\gamma(T, p, q))^{-1} = \sup_{\|Tf\|_q = 1} \operatorname{dist}_p(f, \mathcal{N}(T)).$$
⁽²⁾

* The author gratefully acknowledges NSF support in Grant GP19620.

Copyright © 1975 by Academic Press, Inc. All rights of reproduction in any form reserved.

If there is a function f in $\mathcal{D}(T)$ for which the supremum on the right-hand side of (2) is attained, we say f is extremal.

We can now restate (1) in terms of the minimum modulus. We use n + 1 instead of *n* and consider the operator $T = D^{n+1}$. The null space of *T* is \mathbf{P}_n . Hence, the inequality (1) and the fact that it is sharp is exactly the same as saying

$$\gamma(D^{n+1},\infty,\infty)=2^n(n+1)!$$

Also, the function $2^{-n}/(n+1)! \cos(n+1) \arccos x$ is extremal.

In this sense, we see that (1) is really just the determination of $\gamma(D^{n+1}, \infty, \infty)$. It is in this spirit that we seek generalizations of (1). Thus, we will replace D^{n+1} by more general operators T, and replace \mathbf{P}_n by $\mathcal{N}(T)$. We would also like to replace L^{∞} by other L^p spaces. The problem then is to determine $\gamma(T, p, q)$. When this is accomplished, we have the inequality

$$\operatorname{dist}_{p}(f, \mathcal{N}(T)) \leqslant (\gamma(T, p, q))^{-1} \parallel Tf \parallel_{q},$$
(3)

as our generalization to (1), and of course (3) is sharp.

Our techniques will be applicable to operators T of the form

$$T = (D + \lambda_n(x)) \cdots (D + \lambda_1(x)), \qquad \lambda_k \in C^{(n-k)}[-1, 1].$$
(4)

The functions λ_k are assumed to be real valued. These requirements on T guarantee, among other things, that $\mathcal{N}(T)$ is a Chebyshev space of dimension n.

In Section 2, we will determine $\gamma(T, p, \infty)$, for each $1 \le p \le \infty$. The case $\gamma(T, \infty, \infty)$ is a result of M. Zedek [7]. The value of $\gamma(T, \infty, \infty)$ was also obtained by T. Rivlin [6] with a different point of view. Our approach differs from Rivlin's and Zedek's. It is more in line with the traditional proofs of Bernstein's inequality. In Section 3, we will determine $\gamma(T, 1, 1)$. Here, our approach is approximation theoretic, relying heavily on duality and characterizations of best approximations in L^1 .

The reader will find that conspicuously absent is the determination of $\gamma(T, 2, 2)$, which on the surface would appear to be the most manageable because of all the structure in L^2 . This case can be handled in a theoretical sense using a calculus of variations approach as is done in the paper of S. Goldberg and A. Meir [3]. However, the determination of the numerical value of $\gamma(T, 2, 2)$, even for $T = D^n$, appears to be a formidable problem.

2. The Determination of $\gamma(T, p, \infty)$

When T is a differential operator of the form (4), then $\mathcal{N}(T)$ is a Chebyshev space of dimension n (Zedek [7]). This means that we can interpolate any

n values by functions in $\mathcal{N}(T)$. We will use a remainder formula for this interpolation which is the analogue of Cauchy's formula for Lagrange interpolation.

LEMMA 1. If $f \in C^{(n)}[-1, 1]$ has (n - 1) distinct zeros in [-1, 1], then there is a point ξ in (-1, 1) for which $Tf(\xi) = 0$.

Proof. This is a result of Zedek [7].

LEMMA 2. Suppose ψ is a solution to the equation $T\psi = 1$ on [-1, 1]which has exactly n distinct zeros $x_1, x_2, ..., x_n$ in [-1, 1]. If $f \in C^{(n)}[-1, 1]$ and $P \in \mathcal{N}(T)$ interpolates f at each point $x_1, x_2, ..., x_n$, i.e., $P(x_i) = f(x_i)$, i = 1, 2, ..., n, then for each $x \in [-1, 1]$ there is a $\xi_x \in (-1, 1)$ such that

$$f(x) - P(x) = Tf(\xi_x) \psi(x).$$
(5)

Proof. The proof is an exact mimic of the proof of Cauchy's formula for $T = D^n$. The formula (5) is clear when x is one of the points $x_1, x_2, ..., x_n$. When $x \neq x_i$, i = 1, 2, ..., n, let $\alpha = (\psi(x))^{-1} \cdot (f(x) - P(x))$. The function $f(t) - P(t) - \alpha \psi(t)$ vanishes at the n + 1 distinct points $x, x_1, x_2, ..., x_n$, and hence by Lemma 1 there is a point ξ_x for which $T(f - P - \alpha \psi)(\xi_x) = 0$. Since, TP = 0 and $T\psi = 1$ on [-1, 1], the last equation can be rewritten as $\alpha = Tf(\xi_x)$ which gives (5) by the very definition of α .

Now, let ψ be any function in $C^{(n)}[-1, 1]$ for which $T\psi = 1$ on [-1, 1]. We want to approximate ψ by elements of $\mathcal{N}(T)$ in the $L^p[-1, 1]$ norm. The existence and uniqueness of such approximants are classical results [4]. Denote by P_p^* , the best $L^p[-1, 1]$ approximation to ψ from $\mathcal{N}(T)$, so that

$$\|\psi-P_{p}^{*}\|_{p}=\inf_{P\in\mathcal{A}^{*}(T)}\|\psi-P\|_{p}$$
 .

LEMMA 3. For each $1 \leq p \leq \infty$, the function $\psi_p = \psi - P_p^*$ has exactly *n* distinct zeros in [-1, 1] and changes sign at each of these zeros.

Proof. We first show that ψ_p has at least *n* changes of sign in [-1, 1]. For $p = 1, \infty$, this follows from the classical alternation theorems. For $1 , the proof is simple enough. By the duality theorem for <math>L^p$ approximation [4, p. 84], the function $h_p = |\psi_p|^{p-1} \operatorname{sgn} \psi_p$ is orthogonal to $\mathcal{N}(T)$, i.e.,

$$\int_{-1}^{1} P(x) h_{p}(x) dx = 0, \qquad P \in \mathcal{N}(T).$$
(6)

Notice that h_p changes sign precisely at the points where ψ_p changes sign. If ψ_p and hence h_p has less than *n* changes of sign in (-1, 1), then we can

construct a function $P \in \mathcal{N}(T)$ which changes sign precisely at these points (this is a well-known property of Chebyshev systems [5, p. 30]). This makes it clear that

$$\int_{-1}^{1} P(x) h_p(x) dx \neq 0,$$

which is the desired contradiction. Thus, ψ_p has at least *n* changes of sign in (-1, 1).

That ψ_p can have no more than *n* zeros in [-1, 1] follows from Lemma 1. For if not there would be a point $\xi \in (-1, 1)$, with $T\psi_p(\xi) = 0$ which contradicts the fact that $T\psi_p := 1$ on [-1, 1].

We can now easily prove the main result of this section.

THEOREM 1. If T is of the form (4), then for $1 \le p \le \infty$, $\gamma(T, p, \infty) = \|\psi_p\|_p^{-1}$ and ψ_p is an extremal function.

Proof. Let $x_1, x_2, ..., x_n$ be the *n* distinct zeros of ψ_p in [-1, 1]. Suppose first that $f \in C^{(n)}[-1, 1]$ and $P_f \in \mathcal{N}(T)$ is the function which interpolates f at $x_1, x_2, ..., x_n$. From Lemma 2, we see that if $x \in [-1, 1]$, there is a point $\xi_x \in (-1, 1)$ such that

$$f(x) - P_f(x) = Tf(\xi_x) \psi_p(x).$$

So,

$$||f(x) - P_f(x)|| \leq ||Tf||_{\infty} |\psi_p(x)|, \quad -1 \leq x \leq 1.$$

Taking the norm in L^p , we find

$$\|f-P_f\|_p\leqslant \|Tf\|_{\infty}\|\psi_p\|_p,$$

or

$$\operatorname{dist}_{p}(f, \mathscr{N}(T)) \leqslant || \psi_{p} ||_{p} || Tf ||_{\infty}.$$

$$(7)$$

This result also holds for all f with $f^{(n-1)}$ absolutely continuous and $Tf \in L^{\infty}[-1, 1]$, because of the denseness of $C^{(n)}[-1, 1]$ in this space. The estimate (7) shows that $\gamma(T, p, \infty) \ge || \psi_p ||^{-1}$. The opposite inequality is immediate when we take $f = \psi_p$.

When $T = D^n$, the functions ψ_p and the values of $\gamma(D^n, p, \infty)$ are easily obtained for $p = 1, 2, \infty$. For $p = 1, \psi_1$ is the normalized Chebyshev polynomial of the second kind and $\gamma(D^n, 1, \infty) = 2^{n-1}n!$. For $p = 2, \psi_2$ is the normalized Legendre polynomial of degree n and $\gamma(D^n, 2, \infty) = (n + 1/2)^{1/2}(2n)!/2^n n!$. For $p = \infty, \psi_\infty$ is the Chebyshev polynomial of degree n and $\gamma(D^n, \infty, \infty) = 2^{n-1}n!$, which is again Bernstein's result (1).

RONALD A. DEVORE

3. The Determination of $\gamma(T, 1, 1)$

In this case the situation is a little more subtle, mainly because there is no extremal function in $\mathscr{D}(T)$. We will use a well-known duality theorem for L^1 approximation which we now state.

LEMMA 4. Let $f \in L^1[-1, 1]$ and \mathcal{M} be a finite dimensional subspace of $L^1[-1, 1]$. Then,

$$\operatorname{dist}_{\mathbf{1}}(f, \mathscr{M}) = \sup_{h \in \mathscr{M}^{\perp}} \int_{-\mathbf{1}}^{\mathbf{1}} f(x) h(x) dx,$$

where $\mathcal{M}^{\perp} = \{h \in L^{\infty} : \|h\|_{\infty} = 1 \text{ and } \int_{-1}^{1} P(x) h(x) dx = 0, P \in \mathcal{M} \}.$

Recall, the function ψ_1 introduced in the last section. Since the span of $\mathcal{N}(T) \cup \{\psi_1\}$ is a Chebyshev space (use Lemma 1), we also have available Markov's theorem for L^1 approximation [4, p. 67].

LEMMA 5. Let $f \in C[-1, 1]$ and $P_f \in \mathcal{N}(T)$ be that function which interpolates f at $x_1, x_2, ..., x_n$ the zeros of ψ_1 . If $f - P_f$ changes sign precisely at $x_1, x_2, ..., x_n$, then P_f is the best $L^1[-1, 1]$ approximation to f from $\mathcal{N}(T)$ and

dist₁(f,
$$\mathcal{N}(T)$$
) = $\left| \int_{-1}^{1} f(x) \operatorname{sgn} \psi_1(x) \, dx \right|$.

LEMMA 6. If $f \in C^{(n)}[-1, 1]$ with Tf > 0 (Tf < 0) on [-1, 1], then P_f is the best $L^1[-1, 1]$ approximation to f from $\mathcal{N}(T)$ and

$$\operatorname{dist}_{\mathbf{I}}(f, \mathscr{N}(T)) = \Big| \int_{-1}^{1} f(x) \operatorname{sgn} \psi_{\mathbf{I}}(x) \, dx \Big|.$$

Proof. From Lemma 2, we see that

$$f(x) - P_f(x) = Tf(\xi_x) \psi_1(x).$$

Since Tf > 0, $f - P_f$ will change sign precisely when ψ_1 does and thus the result follows from Lemma 5.

We can now determine $\gamma(T, 1, 1)$. Let T^* be the adjoint operator to T (see [2, p. 1285]). Denote by Ψ_1 , the solution to the differential equation $T^*\Psi = \operatorname{sgn} \psi_1$, with initial conditions $\Psi_1^{(k)}(-1) = 0$, k = 1, 2, ..., n. When $f \in C^{(n)}[-1, 1]$ and $P \in \mathcal{N}(T)$ with $P^{(k)}(1) = f^{(k)}(1)$, k = 1, 2, ..., n, then

$$\int_{-1}^{1} f(x) \operatorname{sgn} \psi_{1}(x) \, dx = \int_{-1}^{1} \left(f(x) - P(x) \right) \operatorname{sgn} \psi_{1}(x) \, dx$$
$$= \int_{-1}^{1} \left(f(x) - P(x) \right) T^{*} \Psi_{1}(x) \, dx$$
$$= \int_{-1}^{1} T(f - P)(x) \, \Psi_{1}(x) \, dx$$
$$= \int_{-1}^{1} Tf(x) \, \Psi_{1}(x) \, dx. \tag{8}$$

Similarly, if h is any function in $\mathcal{N}(T)^{\perp}$ and H satisfies $T^*H = h$, with $H^{(k)}(-1) = 0, k = 1, 2, ..., n$, then

$$\int_{-1}^{1} f(x) h(x) dx = \int_{-1}^{1} Tf(x) H(x) dx$$
(9)

THEOREM 2. If T is of the form (4), then $\gamma(T, 1, 1) = || \Psi_1 ||_{\infty}^{-1}$.

Proof. First, let $f_0 \in C^{(n)}[-1, 1]$ with $|| Tf_0 ||_1 = 1$ and $h \in \mathcal{N}(T)^{\perp}$. Then, by (9)

$$\int_{-1}^{1} f_0(x) h(x) dx = \int_{-1}^{1} Tf_0(x) H(x) dx \leq \sup_{\|Tf\|_1 = 1} \int_{-1}^{1} Tf(x) H(x) dx.$$
(10)

It is to be understood in (10) and the sequel that the suprema are taken only over functions in $C^{(n)}[-1, 1]$, unless explicitly stated otherwise. Now, the supremum in (10) is the $L^{\infty}[-1, 1]$ norm of H. If $|| H ||_{\infty} = H(x_0)$ for some $x_0 \in [-1, 1]$, then the supremum can be attained by considering only functions with Tf > 0. Hence, in this case,

$$\int_{-1}^{1} f_{0}(x) h(x) dx \leqslant \sup_{\substack{Tf > 0 \\ \|Tf\|_{1}=1}} \int_{-1}^{1} Tf(x) H(x) dx$$

$$= \sup_{\substack{Tf > 0 \\ \|Tf\|_{1}=1}} \int_{-1}^{1} f(x) h(x) dx \leqslant \sup_{\substack{Tf > 0 \\ \|Tf\|_{1}=1}} \left| \int_{-1}^{1} f(x) \operatorname{sgn} \psi_{1}(x) dx \right|$$

$$= \sup_{\substack{Tf > 0 \\ \|Tf\|_{1}=1}} \left| \int_{-1}^{1} Tf(x) \Psi_{1}(x) dx \right| \leqslant \|\Psi_{1}\|_{\infty}.$$

Here, for the second inequality, we used Lemmas 6 and 4.

Similarly, when $||H||_{\infty} = -H(x_0)$, we need only consider f's with Tf < 0. Arguing as we have above, we find that

$$\int_{-1}^1 f_0(x) h(x) dx \leqslant || \Psi_1 ||_{\infty},$$

for all $h \in \mathcal{N}(T)$. Hence, from Lemma 4, it follows that

$$\operatorname{dist}_{1}(f_{0}, \mathscr{N}(T)) \leqslant \| \Psi_{1} \|_{\infty}, \qquad (11)$$

whenever $f_0 \in C^{(n)}[-1, 1]$, with $||Tf_0||_1 - 1$. The restriction $f_0 \in C^{(n)}$ is removed by a denseness argument. Thus, (11) shows that

$$\gamma(T, 1, 1) \gg \| \Psi_1 \|_{\infty}^{-1}.$$

$$(12)$$

To see the reverse inequality, consider any $f \in C^{(n)}[-1, 1]$, with Tf > 0 (Tf < 0) and $||Tf||_1 = 1$. Then, from Lemma 6

$$\operatorname{dist}_{\mathbf{I}}(f, \mathscr{N}(T)) = \left| \int_{-1}^{1} f(x) \operatorname{sgn} \psi_{\mathbf{I}}(x) \, dx \right| = \left| \int_{-1}^{1} Tf(x) \, \Psi_{\mathbf{I}}(x) \, dx \right|.$$

Taking a supremum over all such f we see that the right-hand side becomes the $L^{\infty}[-1, 1]$ norm of Ψ_1 , so that

$$\sup_{\|Tf\|_{\mathbf{1}}=1} \operatorname{dist}_{\mathbf{I}}(f, \mathscr{N}(T)) \geqslant \|\Psi_{\mathbf{1}}\|_{\infty}.$$

In other words,

$$\gamma(T, 1, 1) \leqslant || \Psi_1 ||_{\infty}^{-1}.$$

This is the reverse inequality to (12) and proves the theorem.

When we take $T = D^n$, the function ψ_1 is the Chebyshev polynomial of the second kind of degree *n*. Hence $\operatorname{sgn} \psi_1 = \operatorname{sgn} \sin(n + 1) \operatorname{arc} \cos x$. This means that $\operatorname{sgn} \psi_1$ changes sign at the points $\cos(k\pi/(n + 1)), k = 1, 2, ..., n$. The points $\cos(k\pi/(n + 1))$ are spaced so that the distance between consecutive points increases as we move from -1 to 0 and decreases as we move from 0 to 1. Because of this, an induction argument shows that $|| \Psi_1 ||_{\infty}$ is $| \Psi_1(0) |$ when *n* is odd and $| \Psi_1(\cos(n + 2)\pi/(2n + 2)) |$ when *n* is even.

Rather than try to determine $|| \Psi_1 ||_{\infty}$ directly, it is easier to return to the ideas used in the proof of Theorem 2. Consider the case when $|| \Psi_1 ||_{\infty} = \Psi_1(0)$. Then,

$$\Psi_{1}(0) = \int_{-1}^{1} \Psi_{1}(x) \ d\mu(x),$$

where $d\mu$ is the Dirac measure with unit mass at 0. The measure $d\mu$ is not the *n*th derivative of a function from $\mathscr{D}(D^n)$ which is why we dont have an extremal function. However,

$$\Psi_{1}(0) = \int_{-1}^{1} \Psi_{1}(x) \, d\mu(x)$$

= $\frac{1}{(n-1)!} \int_{-1}^{1} x_{+}^{n-1} \operatorname{sgn} \psi_{1}(x) \, dx = \frac{1}{(n-1)!} \operatorname{dist}_{1}(x_{+}^{n-1}, \mathbf{P}_{n-1}),$

where x_{+}^{n-1} is defined to be 0 if x < 0 and x^{n-1} if x > 0.

Even though there is no extremal function in the strict sense (x_{+}^{n-1}) is not in $\mathscr{D}(D^{n})$, the function $x_{+}^{n-1}/(n-1)!$ still serves the purpose of determining $\gamma(D^{n}, 1, 1)$ when *n* is odd. Similarly,

$$(\gamma(D^n, 1, 1))^{-1} = \frac{1}{(n-1)!} \operatorname{dist}_1((x - \cos(n+2) \pi/(2n+2))^{n-1}, \mathbf{P}_{n-1}),$$

when *n* is even. The problem of determining $dist_1(x_+^{n-1}, \mathbf{P}_{n-1})$ is solved explicitly in [1] by means of a finite but complicated sum which we do not reproduce here. When *n* is even, the results of [1] do not determine $\gamma(D^n, 1, 1)$ explicitly but do provide asymptotic estimates.

References

- 1. R. DEVORE, On L_p -approximation of functions whose *m*th derivative is of bounded variation, *Studia Sci. Math. Hung.* 3 (1968), 443–450.
- 2. N. DUNFORD AND J. SCHWARTZ, "Linear Operators," Part II, Interscience, New York, 1963.
- 3. S. GOLDBERG AND A. MEIR, Minimum moduli of ordinary differential operators, preprint.
- 4. M. GOLOMB, "Lectures on the Theory of Approximation," Argonne National Laboratory, 1962.
- 5. S. KARLIN AND W. STUDDEN, "Tchebycheff Systems: With Applications in Analysis and Statistics," Interscience, New York, 1966.
- T. RIVLIN, A duality theorem and upper bounds for approximation, *in* "Abstract Spaces and Approximation" (P. L. Butzer and B. Sz.-Nagy, Eds.), pp. 274–280, Proceedings of the conference held in Oberwolfach, 1968, Birkhäuser Verlag, Basel, 1969.
- 7. M. ZEDEK, On approximation by solutions of ordinary linear differential equations, SIAM J. Numer. Anal. 3 (1966), 360-363.